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*Double helix — storing information necessary to direct the

production of proteins. DNA microarrays “
also known as
*Four types of base: A, T, C, G . \
ks “DNA Chips”

*Two base pairs: (A, T), (C, G)

*Complementary strands, capable of precise self-replication.

Newsweek April 10, 2000
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Cell cycle analysis

» Today’s topic: Analysis of yeast genome

* Determine which genes are “cell-cycle
regulated”

* Technical report available at
http://web.stat.ufl.edu/~jbooth

Yeast cell cycle

Network Diagram of the Yeast Cell Cycle
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. Introduction
Introduction

* Arose out of a genomics discussion group at the University of Florida, Two
key papers are
- {1998), Maleaar Biotogy of the Cell
- (20000, Proc. Nat, dcad. Sci,

g and classifying cell

pers concern statistical techniques for identify
ically

cyele-regulated genes in the yeast genome: specif

— Fourter Analysis (Spellman et al.)
— Singular Value Decomposition (Alter et al.)
» Goals:

- To explain and compare the
and Alter papers.

used in the Sp

— Provide simpler, standard statistical techmigues as altematives.

= Develop new statistical tools for the analysis of this and similar data.

Yeast Genome Data Yeast genome data

« Several million yeast cells required to harvest enough RNA

to produce a microarray

* Synchronized population of cells produced by

~ clutriation (size-based)
— alpha-pheromone arrest
— temperature based arrest

® 2-channel competitive hybrdization

= TIn nt RNA (synchronized cells) used to to synthesize a
cDNA-Cy5 labelled probe (red)

~ Control RNA (unsynchromzed cells) used to to synthesize a
CcDNA-Cy3 lubelled probe (green)

— Expression or intensity level measures the amount of cDNA
“hybridized™ to chip

» Measurement is ratio of Cy3 to Cy3 expression levels
¥ = log(expression ratio)

Why take logarithms? Symmetry: log(1/2) = = log(2)



Microarray Data

ray data

array data can be thought of in terms of a matrix in which the rows represent
es and the columns represent different times or treatments.

e ;= jth measurement (log expression ratio) on ith gene
o ¥ = {w,}, microarray matrix

time/treatment

gene | ™
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l':\umplc. Yeast data from Spellman et al. (1998)

o Eluriation: #n = 5981 genes, m = 14 expression ratios taken at 30
minute intervals over the course of one cell cycle.

* Alpha-factor: n = 4579 genes, m = 18 expression ratios taken at 7
minute intervals over the course of two cell eyeles.

Normalization Issues

 Normalization Issues

Normalization is the process of removing systematic variation in
microarray experiments so that DNA expression levels can
be compared across slides.

The observed intensity for each spot is determined by:
*  Amount of target DNA on the microarray

*  Amount of probes available for hybridization

*  Experiment conditions of hybridizati
*  Location on the array
*  Dye bias

From: Yang et al. 2001

Fourier analysis

Fourier Analysis

model the var

ition in log expression ratios over the course of the

cell cycle for each gene using a linear combination of cosine and sine waves:
4\ dp e " T
M) = —+aycos(2mt /T +8) + by sin(2m /T +8)
o [ isthe length/period of the cell eyele

o O is the initial phase

e Times of peak expression above and below the mean are two solutions (7/2
apart) of the equation:

tan{2mt /T +0) =by /a4y

Corresponding angles ¢ = 271/ T determine opposite points on the unit ¢ir-

le.

o

s Sort genes according to angle or phase of peak expression

Image issues

* Image Issues

1. Spot parameters

Layout, Distance between spot, Spot size

N

. Spot Information

Spot intensity, Background, Quality measure

3. Where is the spot?

From: Yang et al. 2000

Background noise

Background Noise

Spellman’s analysis suggested that as many as 800 genes are cell cycle-regulated

including 104 known to be cell cyele ted from previous work. However,

ated.

most genes are not cell eyele-regul

» Concentrate on genes whose expression profiles are “sig ty™ more
variable than background noise: for example, those for which
5 = ks
where x is the pooled background standard deviation estimate,
» Assuming Gaussian random noise
Plsi > ks} = Pl = E(m—1)}
Example. Alpha-factor data: n = G,m=18
s = median sample variance (excluding 78 known genes)
k | Expected Actual Known
1O 2080 2326 75
| 490 1379 74
1.5 1 720 70
20 I 329 59
Estimation

Estimation
Estimates of the Fourier coefficients can be obtained by a least squares fit of the

log expression profiles to the linear model

1y G
ey apicos(2mt /T ) + bajsin(2m /T + ey

I
Vif=
S 2

o Goodness-of-fit of Fourter model to each gene's expression profile measured
by R°.

o Using the alpha-factor data, 600 genes exceed an R* threshold of .4, includ-
ing 33/78 known cell eycle-regulated genes.

ize of 18)

o Assuming random Gaussian noise (with a sample
P(R? = 4)=P(Fy ;5= 5)=0.0217.

The expected number is therefore 4379 x 0.0217 = 100
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Figure 1: Expre
Fourier model fits

Fourier sort of T8 known gones from alpha-factor data

Expression profiles

ion profiles for four known cell eyele-regulated genes along with

Fourier sort
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Figure 2: Kemel density
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Dashed densities are for

known cell eyele-regulated genes.

Singular Value Decomposition

Singular value decomposition

Microarray matrix, ¥, can be decomposed into a product involving two matrices

with orthonormal columns and a diagonal matrix: i.e.

Hingdan wabiims

Singular value graphs
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Alter et al, 2000

uy = kth eigenvector of Y'Y or kth “eigenarray™

vy = kth eigenvector of Y'Y or kth “cigengene”

Approximation using three components gives

Vi = (81t vy + (S2up)vay + (53 )vsy + ey

Spug . k= 1.2.3 are precisely the least squares estimates obtained by re-
gressing the ith gene’s profile on the first three eigengenes.

“By analogy” with Fourier model, estimate the phase of peak expression for
ith gene as solution to

Comparison

Alpha Fourier Alpha Alter




Circular correlation Circular correlation - example

Circular Correlation

Sort 1 Son2
Agreement between two sorts can be measured using circular correlation coeffi-
cients: Fisher (1995) “Statistical Analysis of Circular Data™ High i

!
+ T-monotone association monotone
association 7
c-bD = Soe
™M= =— kel
V=c+D

where €/ are the number of concordant/discordant phase triplets in the
two samples

. : sort 1 sart 2
o T-linear association

Low + &
= Al monotone
sin” (¢ —¢;) Tsin“(8,—0;) association

where ¢y and 8; are the phases of the ith gene in the two samples \

Circular correlation - comparison

Classification
Comparison of Fourier and SVD (Alter) sorts Classificati
using circular correlation N O
T-monotone T-lincar .I he cell cycl:: phase grouping is known for 104 genes. 78 of these are present
in the alpha-factor data. These can be used as training sample to produce a gene
&5 4568 classifier using a stochastic search algorithm
Alpha Fourier Alpha Alter e Define boundaries between 5 cell cycle phases: S, 8/G2, G2/M, M/G 1., G1.

This 1s equivalent to placing 5 radii on the eircleplot, with radii falling mid-
way between two adjacent genes,

o Select the radii that maximize the proportion of the training sample that 1s
correctly classified.

« Number of ways of choosing 5 radii with 78 genes is approximately 27
million.

Fourier sort Stochastic search

Fourier sort of T known genes from alpha-factor data

Stochastic Search Algonthm
//*_..-._\ E

“u 1. Fix 4 radii at current values
o \
P, ;
s i 2. Move the remaining radius (/) to new position with probabilities
4 \
Tf . WG a cfdi+h
. Gl =
1 a5 U Flen/di+ )
H ¥ SG2
| . cam ¥ = :
f where ¢,/d; are the numbers of genes correctly/incorreetly classified be-
\ 7 tween radii j— 1 and j+1.
N = 3. One iteration consists of a move for all 3 radii.
e -

|

. Repeat for M iteratio

M = 20.000)

L

. Sort iterations according to number of genes correctly classified.



Top Twenty Classifications Top Twenty Fourier sort

Fourier sort of 78 known genes from alpha-factor data

Top Twenty Classifications
Frequency | Number | Classification
of Visits | Correct
73 766 | {4.18.59,68,
50 b
57 66
48 66
35 65
34 65
33 65
33 65
30 65 .59.67.7
30 65 59,67, 8
30 65 5
30 63
28 65
28 65
28 65
27 65
26 65
25 65
25 65
24 65
Both Sorts Summary
Sum mary
Radius = 1 Radius = r?

o Fourier analy
standard stati

method of Spellman ¢t al. can be explained using simple,
ical methods.

s e o T B Bt s e Finsriat et o T4 ¥, romes o aphafactor s

Spellman et al. combined data from 3 experiments and to obtain an overall
estimate of “phase™ of peak of expression for each gene.

2 . Can this “meta-analysis™ be accomplished using a (simple) statistical model?
'd > e Not clear that SVD analysis adds anything to Spellman.
H \ gt ik Fourier and SVD sorts are similar (circular correlation).
! s i L S N A b
L o f C e . - Actual analysis of Alter et al. involved extensive processing/manipulation
[ 4
3 y o At of the data
"\.. N |
i - . W_: o Stochastic search algorithm provides data-driven method for ¢ genes,
- : s
u
. Simultancous Inferences

Last Thoughts: Simultaneous Inferences

To identify differentially expressed genes, we have to control
error rates in thousands of simultaneous hypotheses tests.

1. Multiple comparison techniques were
explored in Dudoit et al. (2000)

2. False discovery rates approaches were
studied in Tusher et al. (2001)

3. Empirical Bayes analysis was developed in
Efron et al (2001)



