Statistical Issues in Microarray Experiments

George Casella University of Florida casella@stat.ufl.edu

Work done with Jim Booth and Sam Wu –Statistics John Davis and Janice Cooke – Forest Genetics

Outline

- Brief Introduction to DNA Microarrays
- Example of up- and down-regulated genes
- Cell Cycle Analysis
- Fourier vs. SVD analysis
- Classification of Genes
- Final thoughts

Cell cycle analysis	Introduction
Today's topic: Analysis of yeast genome Determine which genes are "cell-cycle regulated" Technical report available at http://web.stat.ufl.edu/~jbooth	 Arose out of a genomics discussion group at the University of Florida. Two key papers are Spellman et al. (1998), Molecular Biology of the Cell Alter et al. (2000), Proc. Nat. Acad. Sci. The papers concern statistical techniques for identifying and classifying cell cycle-regulated genes in the yeast genome; specifically Fourier Analysis (Spellman et al.) Singular Value Decomposition (Alter et al.) Goals: To explain and compare the statistical techniques used in the Spellman and Alter papers. Provide simpler, standard statistical techniques as alternatives. Develop new statistical tools for the analysis of this and similar data.

Yeast genome data **Yeast Genome Data** Several million yeast cells required to harvest enough RNA to produce a microarray • Synchronized population of cells produced by - elutriation (size-based) - alpha-pheromone arrest - temperature based arrest • 2-channel competitive hybridization - Treatment RNA (synchronized cells) used to to synthesize a cDNA-Cy5 labelled probe (red) - Control RNA (unsynchronized cells) used to to synthesize a cDNA-Cy3 labelled probe (green) Expression or intensity level measures the amount of cDNA "hybridized" to chip • Measurement is ratio of Cy5 to Cy3 expression levels $y = \log(\text{expression ratio})$ Why take logarithms? Symmetry: log(1/2) = -log(2)

Microarray data

•

Normalization Issues

Microarray data can be thought of in terms of a matrix in which the rows represent genes and the columns represent different times or treatments.

- $y_{ij} = j$ th measurement (log expression ratio) on *i*th gene.
- $Y = \{y_{ij}\}$, microarray matrix

	time/treatment				
gene	t_1	t_2	111	t_m	
1	y11	¥12	•••	y_{1m}	
2	¥21	<i>Y</i> 22		<i>У</i> 2 <i>m</i> ⋮	
	уп :	<i>Y1</i> 2	••••	yim ∶	
1	Val	Vu2		Van	

Example. Yeast data from Spellman et al. (1998)

be compared across slides.

Location on the array

Dye bias

- Elutriation: n = 5981 genes, m = 14 expression ratios taken at 30 minute intervals over the course of one cell cycle.
- Alpha-factor: n = 4579 genes, m = 18 expression ratios taken at 7 minute intervals over the course of two cell cycles.

Normalization Issues

The observed intensity for each spot is determined by:

Amount of probes available for hybridization

• Amount of target DNA on the microarray

Experiment conditions of hybridization

Normalization is the process of removing systematic variation in

microarray experiments so that DNA expression levels can

• Image Issues

1. Spot parameters

Layout, Distance between spot, Spot size

- 2. Spot Information
 - Spot intensity, Background, Quality measure
- 3. Where is the spot?

From: Yang et al. 2000

Background noise

Image issues

Background Noise Spellman's analysis suggested that as many as 800 genes are cell cycle-regulated including 104 known to be cell cycle-regulated from previous work. However, most genes are not cell cycle-regulated. · Concentrate on genes whose expression profiles are "significantly" more variable than background noise; for example, those for which $s_i > ks$ where s is the pooled background standard deviation estimate. · Assuming Gaussian random noise $P\{s_i > ks\} \approx P\{\chi^2_{m-1} > k^2(m-1)\}$ **Example.** Alpha-factor data: n = 4579, m = 18s = median sample variance (excluding 78 known genes) k Expected Actual Known 1.0 75 2326 2080 1.2 490 1379 74 15 10 70 From: Yang et al. 2001 2.0 329 59 <1

Fourier analysis

Spellman et al. model the variation in log expression ratios over the course of the cell cycle for each gene using a linear combination of cosine and sine waves:

 $y(t) = \frac{a_0}{2} + a_1 \cos(2\pi t/T + \theta) + b_1 \sin(2\pi t/T + \theta)$

- T is the length/period of the cell cycle
- θ is the initial phase

Fourier Analysis

• Times of peak expression above and below the mean are two solutions $\left(T/2 \text{ apart}\right)$ of the equation:

 $\tan(2\pi t/T+\theta)=b_1/a_1$

Corresponding angles $\varphi=2\pi t/T$ determine opposite points on the unit circle.

Sort genes according to angle or phase of peak expression

Estimation

Estimates of the Fourier coefficients can be obtained by a least squares fit of the log expression profiles to the linear model

$$w_{ij} = \frac{a_{0i}}{2} + a_{1i}\cos(2\pi t_j/T) + b_{2i}\sin(2\pi t_j/T) + e_{ij}$$

- Goodness-of-fit of Fourier model to each gene's expression profile measured by R².
- Using the alpha-factor data, 600 genes exceed an R² threshold of .4, including 53/78 known cell cycle-regulated genes.
- Assuming random Gaussian noise (with a sample size of 18)

$$P(R^2 > .4) = P(F_{2,15} > 5) = 0.0217.$$

The expected number is therefore $4579 \times 0.0217 \approx 100$

Estimation

Singular Value Decomposition Microarray matrix, *Y*, can be decomposed into a product involving two matrices with orthonormal columns and a diagonal matrix; i.e. $Y = USV^{T} = \sum_{k=1}^{m} s_{k}u_{k}v'_{k}$ • Alter et al, 2000 $u_{k} = k$ th eigenvector of *Y*'*Y* or *k*th "eigenarray"

Singular value decomposition

- $u_k = k$ th eigenvector of Y'Y or kth "eigenarray" $v_k = k$ th eigenvector of YY' or kth "eigengene"
- Approximation using three components gives

 $y_{ij} = (s_1 u_{i1})v_{1j} + (s_2 u_{i2})v_{2j} + (s_3 u_{i3})v_{3j} + e_{ij}$

- s_ku_{ik}, k = 1,2,3 are precisely the least squares estimates obtained by regressing the *i*th gene's profile on the first three eigengenes.
- "By analogy" with Fourier model, estimate the phase of peak expression for ith gene as solution to

 $\tan(\phi_i) = \frac{s_3 u_{i3}}{s_2 u_{i2}}$

Classification

Stochastic search

<page-header><section-header><section-header>

Classification

The cell cycle phase grouping is known for 104 genes. 78 of these are present in the alpha-factor data. These can be used as training sample to produce a gene classifier using a stochastic search algorithm

- Define boundaries between 5 cell cycle phases: S, S/G2, G2/M, M/G1, G1. This is equivalent to placing 5 radii on the circleplot, with radii falling midway between two adjacent genes.
- Select the radii that maximize the proportion of the training sample that is correctly classified.
- Number of ways of choosing 5 radii with 78 genes is approximately 27 million.

Stochastic Search Algorithm

1. Fix 4 radii at current values

2. Move the remaining radius (j) to new position with probabilities

$$p_i = \frac{c_i/d_i + \lambda}{\sum_k (c_k/d_k + \lambda)}$$

where c_i/d_i are the numbers of genes correctly/incorrectly classified between radii j-1 and j+1.

- 3. One iteration consists of a move for all 5 radii.
- 4. Repeat for *M* iterations (say M = 20,000)
- 5. Sort iterations according to number of genes correctly classified.

Frequency of Visits	Number Correct	Classification
73	66	{4, 18, 59, 68, 72
59	66	{8, 18, 59, 68, 72]
57	66	{4,18,59,67,72
48	66	{8, 18, 59, 67, 72]
35	65	{5, 18, 59, 67, 72
34	65	{5, 18, 59, 68, 72
33	65	{8, 19, 59, 68, 72
33	65	{7,18,59,68,72
30	65	{8, 19, 59, 67, 72
30	65	{4, 19, 59, 67, 72
30	65	{3, 18, 59, 68, 72]
30	65	{3, 18, 59, 67, 72]
28	65	{9,18,59,68,72
28	65	{7.18,59,67,72
28	65	{4, 18, 59, 67, 73
27	65	{8, 18, 59, 67, 73
26	65	{4, 18, 59, 68, 73
25	65	{8, 18, 59, 67, 71
25	65	{4, 17, 59, 68, 72
24	65	{4.19,59,68,72

venty Classifications

Simultaneous Inferences

.

Last Thoughts: Simultaneous Inferences

To identify differentially expressed genes, we have to control error rates in thousands of simultaneous hypotheses tests.

- 1. Multiple comparison techniques were explored in Dudoit et al. (2000)
- 2. False discovery rates approaches were studied in Tusher et al. (2001)
- 3. Empirical Bayes analysis was developed in Efron et al (2001)